
Introduction: The Tsiolkovski equation 
 

The classical Tsiolkovsky equation gives the increase 

in speed ΔV of a rocket during the phase of propul-

sion. Let us stress that has been established in the co-

moving frame of the rocket by integrating a local 

equation of momentum conservation. In Newtonian 

mechanics, time and space being universal, this result 

was universal, unlike in relativity where time and 

space depend on observers. 

 

Relativistic Tsiolkovski equation 

The Rocket frame 
 

Established in the co-moving frame of the rocket, its 

dynamic parameter is the astronaut's proper time, 

measured by his watch. 

The increase of the “proper” velocity of the rocket ΔV 

is measured by integrating the data of inertial devices 

such as gyroscopes which will define this parameter 

among all the trajectory’s parameters. 

 

The ground frame 
  



For the observer at rest, on the ground, it is with the 

time t, given by his watch (its proper time is different 

of that in the rocket), and the space x, given by a pre-

vious measurement of space of his frame of reference 

denoted R, that the observer will evaluate the speed v 

= dx/dt, of the rocket, which is tangent to the curve 

x(t) describing its trajectory from the ground. 

 

 

Formalism for accelerate motion 
For an accelerated motion, the general relationship 

between these parameters is given by a relationship 

like: 

t = a -1 sinh(a.τ) , x = = a -1 cosh (a.τ)   (1) 

 

 

       

            

 

 

         



 

where t, x are the coordinates of the ground frame 

denoted R, a is the proper acceleration and τ is the 

proper time of the observer in the rocket. 

 

Equation (1) is used in Rindler coordinates for a con-

stant acceleration. The rocket has an acceleration 

which is not constant during propulsion step, so we 

have to replace a by a(τ). As this equation is valid lo-

cally, for the increase of velocity we will then get: 

 

𝑎. 𝜏 = ∫ 𝑎(𝜏)𝑑𝜏
𝜏𝑓

𝜏0

 

 Physically, the value of this integral will be given by 

integrating the data provided by the inertial devices, 

exactly as in the classic Tsiolkovski equation, this 

providing obviously, the same result. We do not have 

to solve this integral as we know its result. 

 

𝑎. 𝜏 = ∫ 𝑎(𝜏)𝑑𝜏
𝜏𝑓
𝜏0

 = ΔV= ve ln(mi /mf ) 

 

The rocket in the ground frame 
 

Consider this equation (1), at the end of the propul-

sion. 

The speed in the ground frame R is: 



v = dx/dt: 

let us differentiate (1) 

 

dx = sinh (aτ)dτ, dt = cosh(aτ)dτ 

 

this gives 

 

v=dx/dt = tanh(aτ)  (2.1) 

 

where  

aτ = V= ve ln(mi /mf ) (2.2) 

 

V is the speed acquired in the frame of reference of 

the rocket, obtained by integrating the proper accel-

eration during the proper time τ of propulsion (prin-

ciple of inertial navigation).  

By plugging (2.2) in (2.1), the velocity in R is: 

 

v = tanh(ve ln(mi /mf ) (3) 

 

This is the relativistic Tsiolkovski equation 

 

Convergence with classic Tsiolkovski equation 
when v/c << 1 
 



By developing tanh(x) in Taylor’s series, one shows 

that if v << c, we get: 

 

v/c ≈ (ve /c) ln(mi /mf ) 

 

which is the classical Tsiolkovsky equation. 

 

Rindler formalism and horizon 

 

 

Let us use Rindler coordinates, which are well suited 

to this type of phenomenology. 

  

 
 



When the rocket is at A, it is beyond the horizon for 

observer B who has remained stationary in the initial 

frame of reference. 

 

Another demonstration, chapter "Special relativity" 

on the link: 

https://en.wikipedia.org/wiki/Tsiolkov-

sky_rocket_equation 

 

 
 

 
 


