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Summary The precession, resulting from the 4D spacetime curvature, of spacetime geodesics in Schwarzschild’s
spacetime, is well-known topic.1. In this article we will derive the precession of a geodesic in the space section
of the Schwarzschild’s spacetime. This precession which, unlike the precession in spacetime, only depends on
the ratio 2 M/l , is defined by an original infinite polynomial of even powers of M/l, this providing a real
precession, even for imaginary values of l. In the conclusion, we will discuss how this solution may enlighten
the understanding of the precession phenomenology.

1 Space geodesics in Schwarzschild’s metric

In the three dimensional space section of Schwarzschild’s spacetime where dσ2 is the metric line element, we can
also to define the precession of a geodesic in this space section by a r(ϕ) function, with an angular momentum
defined by l = r2dϕ/dσ. 3

Original Schwarzschild’s metric is recalled in equation (1) below.

ds2 = −(1− 2GM

r
)dt2 +

dr2

1− 2GM
r

+ r2(dθ2 + sin2 θdϕ2) = −(1− 2GM

r
)dt2 + dσ2 (1)

Where,

dσ2 = +
dr2

1− 2GM
r

+ r2(dθ2 + sin2 θdϕ2) =
dr2

1− 2GM
r

+ r2dϕ2, for θ =
π

2
(2)

In the last part of the equation , we set θ = π/2, which is allowed, per the spherical symmetry, without loss
of generality.

2 Analytic method for the precession of planets in Schwarzschild’s
spacetime

2.1 Interest of geodesics in a space section of spacetime

General relativity is a geometrical theory of the gravitation in spacetime. Physical geodesics are timelike or
null geodesics. 4 Unlike geodesics in spacetime which do not depend on the coordinates, geodesics in a space
section of spacetime depend on the coordinates. So, what would be the interest of such geodesics? This interest
is motivated by an original proposal of Painlevé [3] describing the Schwarzschild’s spacetime geodesic as the
geodesic of the Schwarzchild space section multiplied by a conformal factor. This shows that the conformal
structure of the space section and that of the spacetime are the same. This is a quite surprising property.

Therefore, as one defines often the spacetime geodesic by using the Schwarzschild coordinates, geodesics in
its space section would provide a complementary information for describing the geometrical space structure of
a space section which is more complex than it appears at a first look, see [5], figure 1.

∗jacques.fric@etu.univ-paris-diderot.fr. Paris-Diderot University, Laboratory SPHERE.
1For analytic solution solving the spacetime equation, see for instance [4], chapter 19.
2M is the mass of the central body, l is the angular momentum of the space geodesic
3In 4D spacetime, the affine (dynamic) parameter on a timelike geodesic is the proper time, a timelike parameter. In space the

affine parameter on the spacelike geodesic, is a spacelike parameter therefore the dimension of L = r2dϕ/dτ will be a square length
divided by a time while that of l = r2dϕ/dσ will be a length.

4One can also define spacelike geodesics in spacetime but there are not considered to be physical.
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2.2 The geodesic equation in space

We will use the well-known method for getting a general solution for the geodesic equation in space and then,
we will use it for solving the problem of the precession of geodesics in space. Dividing second part of equation
(2) by dσ2 yields:

1 =
dr2

dσ2(1− 2GM
r )

+ r2
dϕ2

dσ2
⇒ dr2

dσ2
= (1− 2GM

r
)(1− r2 dϕ

2

dσ2
) (3)

dr2

dσ2
= (1− 2GM

r
)(1− l2

r2
) (4)

Equation (4), valid only on a geodesic, is equation (3) with l = r2dϕ/dσ which is the conserved angular
momentum, on the spatial geodesic.5

By multiplying equation (4) by (dσ/dϕ)2 = r4/l2, we get:

dr2

dϕ2
= (1− 2GM

r
)(
r4

l2
− r2)⇒ dϕ =

±dr√
−r2(1− 2GM

r )(1− r2

l2 )
(5)

Let us set:

u =
1

r
⇒ r =

1

u
⇒ dr = −du

u2
(6)

By inserting it, in equation (5), we get:

du2

u4dϕ2
= (1− 2GMu)(

1

u4
)(

1

l2
− u2)⇒ dϕ =

±du√
(1− 2GMu)( 1

l2 − u2)
(7)

By defining an angle θ, a parameter A2 and a constant K, such as:

θ = arcsin

√
1 + lu

2
⇒ sin2 θ =

1 + lu

2
, A2 =

4GM

2GM + l
,K =

√
l

l + 2GM
(8)

Equation (7) can be written:6

dϕ

2
= K

dθ√
1−A2 sin2 θ

⇒ ϕ(ψ,A2)

2
= K

∫ θ=ψ

θ=0

dθ√
1−A2 sin2 θ

= KEllipticF (ψ,A2) (9)

Inserting the values of θ, K and A2 defined in equation (8) yields:

ϕ

2
=

√
l

l + 2GM
EllipticF [arcsin(

√
1

2
(1 + lu)),

4GM

l + 2GM
] (10)

EllipticF (ψ,A2) or F (ψ,A2) in a short notation is the integral described in equation (9). This integral,
called elliptic integral of the first kind, includes an argument A2 called the parameter, A is called the modulus.7

The parameter ψ = θ(u), called the amplitude, is, as shown in equation (9), the upper limit of integration of
the angle θ defined in equation (8).

Returning to r = 1/u, we get:

ϕ

2
=

√
l

l + 2GM
EllipticF [arcsin(

√
1

2
(1 +

l

r
)),

4GM

l + 2GM
] (11)

5This ”‘constant of motion”’ l exists as the metric dσ2 does not depend on ϕ.
6By using the definition of θ,A2 and K in equation (8), it is straightforward to verify that du2/[(1 − 2GMu)(−u2 + 1/l2)] =

(2Kdθ)2/(1 − A2 sin2 θ) whose integral is an elliptic integral of first kind.The binary operator ±, in the last term of equation (7),
is related to the orientation of the geodesic as there are two possible orientations. For the integration, we can select one direction,
without loss of generality, that we will associate to the sign +.

7There are several formal notations, this being quite confusing. For instance, it is denoted EllipticF (ψ,A) in WolframMathWorld
but, in both notations, it is A2 which is used in the computation of the integral. It is just two notations for the same object. This
remark will also apply to the EllipticK integral and Jacobi-Amp function, that we will use further.
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2.3 Elliptic-K

K(A2) = EllipticK(A2) = EllipticF (
π

2
, A2) =

∫ π
2

0

dθ√
1−A2 sin2 θ

(12)

EllipticK(A2), also called K(A2) in a short notation, is a special case of EllipticF , where the upper limit
ψ is equal to π/2. It is the complete elliptic integral of the first kind of Legendre and therefore has only one
parameter (A2). There exists an analytic definition of the integral EllipticK(A2) by an infinite polynomial of
powers of A2. This is this polynomial definition, given by equation (19), that we will use further, for calculating
the precession.

With the values of K and A2, defined in equation (8), by using the definition of EllipticK(A2), the equation
(10) for ψ = π/2, can be written:

ϕ(ψ = π/2, A2)

2
=

√
l

l + 2GM

∫ π
2

0

dθ√
1−A2 sin2 θ

=

√
l

l + 2GM
EllipticK(

4GM

l + 2GM
) (13)

Equation(13) that we will use for computing the precession, defines ϕ/2 and not ϕ therefore, we will have
to multiply it by two for getting the result. Equation (13) shows that the solution in space only depends on the
parameters M and l.

2.4 Jacobi-Amp-function

The EllipticF integral defined in equation (10) ϕ/2K = F (ψ,A2) has an inverse function called Jacobi-
Amplitude function noted am(ϕ/2K,A2), such that ψ = am(ϕ/2K,A2). So per the definition of sin(ψ),
where ψ is the upper limit of θ, and K in equation (8) we get 8:

sin2 ψ =
1 + lu

2
= sn2(

ϕ

2K
,A2)⇒ u =

1

l
(−1 + 2sn2(

ϕ

2K
,A2)) (14)

This gives the function u(ϕ). The function r(ϕ) can be deduced by using the relation r = 1/u.

2.5 These elliptic integrals define the precession

EllipicF , EllipticK and their inverse integrals exhibit two angles ψ and ϕ. Equation (13) shows that when θ
varies from 0 to ψ = π/2, ϕ/2K varies from 0 to EllipticK(A2). So for a half-pseudo-orbit where θ varies from
0 to π 9:

∆(
ϕ

2
) = 2KEllipticK(A2)− π (15)

And equation (16) below will be the equation to be used for solving the problem for n full orbits.

∆ϕ = 4n(2KEllipticK(A2)− π) (16)

2.6 Class of equivalence

The equation (16) only depends on parameters K and A2. This equation will provide an exact solution to the
problem, if we know these parameters on the spacelike geodesic. By posing 2GM/c2l = k2, parameters K and
A2, defined in equation (8), can be written:

K = (1 +
2GM

c2l
)−1/2 = (1 + k2)−1/2, A2 = (

2GM

c2l
)(

2

1 + 2GM
c2l

) = (2k2/(1 + k2)) (17)

Therefore, equation (16) will only depend on the dimensionless parameter k2. We will expect a solution as
a function of k2.

This parameter k2 defines a class of spatial solutions.

8In Jacobi elliptic functions, sn(ϕ/2K,A2) = sin(am(ϕ/2K,A2)), see WolframMathWorld, Jacobi elliptic functions.
9A half-orbit defines the dynamic as we assume the symmetry of the orbit for the precession.
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3 Solution for the precession in space

3.1 General solution

By inserting the definition of A2 and K, given in equation (17), in equation (13), giving the formal general
solution, for ψ = π/2, we get:

ϕ

2
=

√
1

1 + k2
EllipticK(

2k2

k2 + 1
) (18)

The integral ElliptickK(k) can be represented by an infinite polynomial: 10

EllipticK(
2k2

k2 + 1
) =

π

2

n=∞∑
n=0

[
(2n!)

22n(n!)2
]2(

2k2

k2 + 1
)n ≡ π

2

n=∞∑
n=0

[
(2n− 1)!!

(2n)!!
]2(

2k2

k2 + 1
)n (19)

where n!! denotes the semi-factorial. By using equation(19), equation (18) becomes:

ϕ

2
=

√
1

1 + k2
(
π

2
)

n=∞∑
n=0

[
(2n− 1)!!

(2n)!!
]2(

2k2

1 + k2
)n =

π

2

n=∞∑
n=0

[
(2n− 1)!!

(2n)!!
]2(2k2)n(1 + k2)−

1
2 (2n+1) (20)

We replaced −(n+1/2) by −(1/2)(2n+1) which will be more convenient. Let us recall that (1+k2)−
1
2 (2n+1)

can also be developed in an infinite polynomial, as defined below:

(1 + k2)α = 1 +

j=∞∑
j=1

(α)(α− 1)..(α− j + 1)

j!
(k2)j (21)

For −1 < k2 < 1 and where α is a real number, with α = −(1/2)(2n+ 1) in our problem.
By using these formulas, equation (20) becomes: 11

ϕ

2
=
π

2

n=∞∑
n=0

(
(2n− 1)!!

(2n)!!
)2(2k2)n(1 +

j=∞∑
j=1

(2n+ 1)(2n+ 3)..(2n+ 1 + 2(j − 1))

(−2j)j!
(k2)j) (22)

The product of these two infinite polynomials is an infinite polynomial. For defining this polynomial we
have to calculate each coefficient Bn of (k2)n which, in the infinite polynomial defined in equation (22), will be
the sum of the product of coefficients of the terms(k2)i of the first polynomial with the coefficients of the terms
(k2)n−i of the second polynomial.

The result of this operation will define an infinite polynomial P (k2)

P (k2) =
π

2

n=∞∑
n=0

Bn(k2)n (23)

Where in Bn, as the first factor of the sum is related to (k2)i, the second factor should be related to (k2)n−i,
therefore in equation (22), we must set n = i, j = (n− i). This yields: (2i+1)(2i+3)..(2i+1+(2(n− i−1))) =
(2i+ 1)(2i+ 3)..(2n− 1)) = (2n− 1)!!/(2i− 1)!!. Therefore Bn can be written:

Bn(k2)n =

i=n∑
i=0

(
(2i− 1)!!

2i!!
)2(2i(k2)i)(

(2n− 1)!!

(2i− 1)!!(n− i)!(−2n−i)
)(k2)n−i (24)

By simplifying by (2i − 1)!! and using (2i − 1)!! = 2i!/(i!2i), (2i)!! = i!2i, 2i!/i!2 = 2i!/(i!(2i − i)!) =
(
2i
i

)
,

n!/i!(n− i)! =
(
n
i

)
, this equation yields:

Bn =
2n!

n!2
(2−2n)

i=n∑
i=0

(−1)n−i

2i

(
n

i

)(
2i

i

)
=

2n!

n!2
(−1n)(2−2n)

i=n∑
i=0

(−1

2
)i
(
n

i

)(
2i

i

)
(25)

10http : //mathworld.wolfram.com/CompleteEllipticIntegraloftheF irstKind.html, equation (2). In terms of the Gauss hy-
pergeometric function, EllipticK = (π/2)2F1(1/2, 1/2, 1, 2k2/(1 + k2)). Let us recall that the Gauss hypergeometric function

2F1(a, b, c; z) is a solution of the second order homogeneous differential equation z(1−z)d2y/dz2 +[c− (a+ b+1)z]dy/dz−aby = 0.
11In the second sum, we will separate the factor 1/2 and the sign − from the formula and will gather them in the factor 1/(−2j)

for simplifying the calculation.
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3.2 The polynomial includes only even powers of (k2)

We will demonstrate that equation (25) giving Bn is a hypergeometric series. Such series is defined by using
the Gauss hypergeometric function 2F1(a; b; c, d). 12

Let us set:

A(n) =
2n!

n!2
(−1n)(2−2n) (26)

Per the formal definition of the Gauss hypergeometric function:

2F1(a; b; c, d) =

i=n∑
i=0

(a)i(b)i
(c)i

(d)i

i!
(27)

Where the notation (a)i = a(a+ 1)..(a+ i−1) is the Pochhammer symbol. If we set a = −n, b = 1/2, c = 1,
d = 2, we get:

(a)i = (−n)(−n+ 1)..(−n+ i− 1) = (−1)i(n)(n− 1)..(n− i+ 1) = (−1)in!/(n− i)!, (b)i = (1/2)(3/2)...(2i−
1)/2 = (1/2)i(2i− 1)!! = (1/2)i2i!/(2ii!), (c)i = (1)(2)...(i) = i!, di = 2i

Inserting these values in equation (27) yields:

2F1(−n; 1/2; 1, 2) =

i=n∑
i=0

(
(−1)i(n!)

(n− i)!
)((

1

2
)i

2i!

2ii!
)(

1

i!
)(

2i

i!
) =

i=n∑
i=0

(−1

2
)i
(
n

i

)(
2i

i

)
) =

Bn
A(n)

(28)

In the second sum of the equation above we used the relations: n!/((n− i)!i!) =
(
n
i

)
and 2i!/(i!i!) =

(
2i
i

)
.

This is the result that we expected!
For demonstrating that all terms B2m+1(k2)2m+1 vanish, we need to use equation (16) of mathworld.wolfram-

HypergeometricFunction, which gives an integral defining the hypergeometric function.

2F1(a; b; c, z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

ub−1(1− u)c−b−1(1− uz)−adu. (29)

By calculating this integral with our parameters (a = −n, b = 1/2, c = 1, z = 2), we get:

∫ 1

0

u−1/2(1− u)−1/2(1− 2u)ndu =

∫ 0.5

0

u−1/2(1− u)−1/2(1− 2u)ndu+

∫ 1

0.5

u−1/2(1− u)−1/2(1− 2u)ndu (30)

Let us define two values of u, (0 ≤ u ≤ 1), u1 and u2 such that u1 = 1/2 + a and u2 = 1/2 − a, where

a ≤ (1/2). We get u
−1/2
1 (1− u1)−1/2 = [(1/2 + a)(1/2− a)]−1/2 = u

−1/2
2 (1− u2)−1/2 = [(1/2− a)(1/2 + a)]−1/2

(symmetry around 1/2).
In (1−2u), for u = u1 we get −2a and for u = u2, we get 2a. This, raised to power n, will give (u1)n = (−2a)n

and (u2)n = (2a)n which are equal when n is even and are opposite when n is odd.
Therefore, as exhibited by equation(30), where the integral is split in two parts (from 0 to 1/2 and from

1/2 to 1), when n is odd (n = 2m + 1), the two parts are opposite, the integral vanishes and when n is even
(n = 2m) the two parts are equal, this integral does not vanish.

Therefore:

P (k2) =

n=∞∑
n=0

B2n(k2)2n (31)

includes only even powers of k2.

ϕ

2
= K.EllipticK(A2) = P (k2) = −π

2

n=∞∑
n=0

B2n(k4)n = −π
2

n=∞∑
n=0

B2n(
(2GM)2

(cL)2
)n (32)

The major interest of this polynomial form, describing the precession, is to show that, even for an imaginary
value of the angular momentum, a real number for ϕ and therefore for the precession is expected! This property
was not revealed by equation (13), as in case of imaginary value of l, we have the product of a square root
of a complex number by an elliptic integral with complex arguments, whose form is not analytic, and whose
tabulated numerical complex value is not exact, this spoiling the result.

12See mathworld.wolfram-hypergeometricFunction, equation (8) for the form of the series generated by such function, and the
Pochhammer notation symbol (a)n.
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This is important because, per the form of the metric described in equations (1) and (2), if we assume that
the angular momentum, on the timelike geodesic in spacetime, is real, that on the spacelike geodesic in space
will be imaginary. Per this property, as both precession in spacetime and space are real it will be possible to
compare them.

A numerical value of this polynomial up to n = 5 is provided in equation (33).

3.3 Numerical value of the polynomial

The polynomial P (k2) is given below up to n = 10. 13

P (k2) =
π

2
(1 +

3

16
(k4) +

105

1024
(k8) +

1155

16384
(k12) +

225225

4194304
(k16) +

2909907

67108864
(k20)) (33)

4 Conclusion

In this paper, we focused our analysis on the space geodesic which does not look to be the most important in
the theory of general relativity which is a spacetime theory. But as the most important information that we
get in physics about some physical or geometrical objects does not reside in the objects themselves but in their
relations, this complementary analysis which provides a set additional relations between objects may induce a
better understanding of the underlying physics described by the theory.
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