
When mathematics reveals hidden
physical reality

In 1961 Newman and Penrose proposed a spinor-like formalism for general relativity. 

Surprisingly, this formalism will stress the structural role of the light in relativity.

Jacques Fric Paris-Diderot University-Lab. SPHERE;  jacques.fric@etu.univ-paris-diderot.fr 



Algebra gathers all the information

• In his book, ”The new scientific spirit”, [1] G. Bachelard, after
considering the interplaying relations between what he calls « the
realism » related to the experience and the « rationalism », related to our
mind elaborating theories for making the physical world understandable,
declared:

• « As the relations between objects are not substantial but relational, it is
the algebra which gathers all relations but only relations. But whether
the objects are not the roots of relations, one may wonder from where
this relations come»

• This comment was mainly aimed to mathematics, but this also holds for
the role of mathematics in some fundamental laws of physics.

Bachelard



Algebra gathers all the information

• So, in mathematics, the compact group of rotations in the 3D Euclidean space
acting on vectors is called SO(3). A vector recovers its position after a
rotation of 2π radians around an axis in space. But the topology of this group
is not simplex. If we write the Lie algebra of the three generators of this
group, we discover that there are other solutions.

• A 2D solution, the SU(2) group acting on spinors, where they recover their
position after a rotation of 4π instead of 2π, has a simplex topology and is
therefore more fundamental than SO(3).

• This shows that the Lie algebra, relating the relations between the objects
(the generators of the group), includes all the information about rotation in
this space. The SO(3) group allowing to build the Lie algebra was just an
example. The Lie algebra extracted its fundamental relational structure.

• It is the group SU(2) which is used in the Electroweak theory which relies on
the product O(1).SU(2), proving that SU(2) is more physical than SO(3).



Illustration of the properties of the SU(2) group

These figures come from the book

“Gravitation” by C.W Misner, K.

S.Thorne and J.A Wheeler [2]



Mathematics at the rescue of physics

• An other example is provided in relativity by the concept of spacetime.

• After proposing its formalism for special relativity, Minkowski declared that
space and time are no longer fundamental concepts and have no physical reality.

• They are only some kind of shadow of a more complex physical reality called
spacetime [3].

• Spacetime is something perfectly well defined by the mathematics in special
relativity, but it is impossible for a human mind to conceive the concept of
spacetime as time and space are so pregant in our mind that the first thing we do
when one say spacetime is to try to separate space and time.

• So, at the beginning of special relativity one tried to recover the Newtonian
approach by synchonizing clock in a frame for having a universal time in this
frame and independantly a space. But this work only in a frame!

Minkowski



Mathematics and physics

• The role of mathematics in the foundation of physics is a widely debated
topic. Many papers have been written about it.

• Here we will work on an example for illustrating how the formalism may
be of a great help for explaining the physical phenomenology.

• After the examples that we gave for illustrating G. Bachelard arguments
we will describe an other example where the formalism helps to
understand the physical phenomenology in relativity.

• We will start by recalling the standard formalism used in relativity in order
to stress the originality of the proposal of Newmann and Penrose that we
will describe.



Mathematics and physics
• As the relativity is a geometrical theory of gravitation which describes a

spacetime, it is usually described, in analytic geometry by using its tools.
On a manifold, modelling the spacetime, a set of global three spacelike and
one timelike coordinates, which are functions, allows to define any point.

• As the general relativity is locally compatible with special relativity, it may
also be described locally by using a Minkowki local base of orthonormal
4-vectors (3 spacelike and 1 timelike) with local coordinates.

• This, called tetrad formalism, which is sometimes used, alternatively, for
describing the spacetime needs a different set of mathematics tools for
being achieved.



Introduction to the NP formalism

• A good introduction to the Newmann-Penrose (NP) formalism is given
by S. Chandrasekhar in his book « The mathematical theory of black
holes » [4]:

• « The Newmann-Penrose formalism is a tetrad formalism with a special
choice of the basis vectors. The choice that is made is a tetrad of null
vectors l, n, m and m* of which l and n are real and m and m* are
complex conjugate of one another.

• The novelty of the formalism, when it was first proposed by Newmann
and Penrose in 1962 [5], was precisely in their choice choice of a null
basis: it was a departure fromthe choice of an orthonormal basis which
was customary till then.

Chandrasekhar



Introduction to the NP formalism

• Penrose was originally led to consider the introduction of a null basis in
incorporating in general relativity spinor analysis in an essential way.

• The underlying motivation for the choice of a null basis was Penrose’s
strong belief that the essential element of a spacetime is its light cone
structure which makes possible the introduction of a spinor basis.

• And it will appear that the light cone structure of the spacetime of the
black holes solutions of general relativity is exactly of the kind that makes
the Newman-Pernrose formalism more effective for grasping the inherent
symmetries of these spacetime and revealing their analytic richness. »

• In addition S. Chandrasekhar point out that this formalism is particularly
efficient in vacuum for the solutions of general relativity. This includes
black holes solutions (more generally solution of Type D in the Petrov-
Pironi classification [6,7]) but also special relativity. We will explain why.

Newman Penrose



Introduction to the NP Formalism

• The word « light » is a generic term for electromagnetic waves or any
phenomenon whose velocity is that of light, i.e also gravitational waves.

• More important, it is the fact that, for complying with the relativity
principle, there exists a velocity invariant in the relativity formalism,
acting as a upper limit for any physical phenomenoly which is the physical
structural constraint.

• Therefore, it is not the light itself which rules the causality but the fact that
there is an upper limit of velocity, the light being only a kind of messenger
traveling at this upper limit of velocity.

• This is this upper limit of velocity which destroys the absolute time and
absolute space of Newton mechanics. This makes the relativistic universe
totally different from that of Newton as a local perturbation is not
immediately known by the whole universe.



Comments on this introduction

• There are several issues in the use the tetrad formalism with a basis
made of a set of null vectors instead of 3 spacelike and 1 timelike
vector.

• A first issue is that, as each null vector is orthogonal to itself, there are
only 3 lineary independant orthogonal null vectors, instead of 4 as in
the Minkowski basis. This looks not compatible for describing a
problem with 4 degrees of freedom.

• Therefore they defined a set of 2 « real » null vectors l, n and 2
« complex » null vector each one being the conjugate of the other. The
real part and the imaginary part will provide 2 additionnal degrees of
freedom making the total to 4, as required.

• Let us recall that his requires a different formalism for the derivatives
of tensors and vectors (Ricci rotation coefficient instead of Christoffel
symbols).



Comments on this introduction

• In relativity the metric is defined by the formula:

• ds² = gμνdxμdxν

• In this formula gμν is callled the metric tensor, dxμ, dxν, the
infinitisimal variation of coordinates and ds is the line element on the
worldline that we will have to integrate by using this formula for
getting the « length » (affine parameter) of the worldline..

• A second issue is that, as the ds² is null, in null geodesic (ds² = 0), we
cannot use it as an affine or dynamic parameter on a world line.



Newman-Penrose formalism

• In this new formalism the metric tensor is no longer that of the special 
relativity.

• But, instead a spinor-like tensor, see [8] for the demonstration.
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Newman-Penrose formalism

• This is mathematically perfectly defined but it is difficult to give a
physical representation of this as a basis of null vectors is something
very difficult to conceive.

• How a set of null coordinates, on a basis made of 3 null vectors
including one complex null vector, which are paths of the light
orthogonal to themselves and that have null affine parameter (ds² = 0)
in a 4 dimensionnal spacetime, can be used for defining points on the
manifold?

• We will see that such formalism, which looks very obscure, will in fact
simplify the equations in many cases, this meaning that, likely, there is
a morphism between the structure (symmetries) of this formalism and
the structure of the phenomenology that it describes.



NP formalism simplifies equations

• First example

• In the Kerr [9] or Kerr Newman [10] black holes, in this NP formalism, the
the spacetime can be fully defined only by one Weyl complex scalar, instead
of several in all other formalisms.

• Let us recall that such spacetime of type D is fully defined in vacuum by the
Weyl tensor which is a conformal tensor, outside of the ring singularity. The
Weyl tensor, which is the Riemann tensor in vacuum, defines the curvature
of the spacetime everywhere. The Weyl tensor has 256 components, but per
its symmetries, it has only ten independent values, usually represented by 5
complex scalars called Weyl scalars.

• The fact that only one of them is needed in the NP formalism show that, as
declared by S. Chandrasekhar, it is the most efficient for grasping the
symmetries of this kind of spacetime.



NP formalism simplifies equations
• Second example 

• In special relativity, we may also use the NP formalism. The first step is to
write the Minkoski metric (coordinates t, x, y, z) :

• ds² = -c²dt² + dx²+ dy² + dz²

• in null coordinates U, V, W, W* by setting:

• U = a(t+x), V=a(t-x), W = a(y+iz), W*= a(y –iz)

• Where a = 2-1/2, is a normalization factor. The metric is now written:

• ds² = -2dUdV + 2dW.dW*

• A boost of parameter φ such that v/c = tanh φ where v is the relative velocity
and a rotation of parameter θ, are defined by operators which are 4x4
matrix.

• Let us compare these operators in the Minkoski and NP formalisms.



NP formalism simplifies equations
• In Minkoski formalism for a boost along the axis x and a rotation

around the same axis x, the matrix is usually written:

• In NP formalism for a boost along the axis x and a rotation around the
same axis x, the matrix can be written (see [8] for the demonstration):

• The NP formalism provides a simpler and more symmetrical matrix,
grasping again the symmetries of the phenomenology.

cosh(φ) -sinh(φ)

-sinh(φ) cosh(φ)

cos(θ) sin(θ)

-sin(θ) cos(θ)

e-φ

eφ

e-iθ

eiθ



Mathematics reveal the NP efficiency

• As the Einstein equation is a set of no linear partial second order
differential equations, analytic solutions may be expected only for highly
symmetric spacetime. At early time in relativity, the solutions were
established by using the symmetries of the spacetime described by the ds².

• The Schwarzschild solution in vacuum, in 1916, relies on a generic form of
the ds² with a spherically space section, constrained by the Einstein
equation (the Ricci tensor must vanish) and the convergence with the
Newton equation at infinity. This method has allowed to find some
solutions of highly symmetric spacetime but failed to find the solution for
rotating black holes which was found by Kerr 47 years later!

• Meanwhile, other methods were developed considering the Weyl tensor
(which is invariant by a conformal transformation), which fully specifies
the curvature of spacetime in vacuum, as an operator acting on bi-vectors.
The study of the eigenvalues of the Weyl tensor will provide an other
fruitful approach.

Kerr



Mathematics reveal the NP efficiency

• An interesting result is that there are a set of 4 null geodesics ( bound to the
roots of a quadratic equation), called principal null geodesics which play a
structural role in the space time as they fully define the metric.

• Categories of vacuum spacetimes will depend on the number of different
roots.

• In type D solutions where the metric is defined in vacuum (empty conformal
spacetimes), there are 2 double roots, one corresponding to a class
(congruence) of null incoming geodesics (going towards the singularity) and
the other to a class (congruence) of null outgoing (coming from the
singularity) geodesics.



Mathematics reveal the NP efficiency

• If the NP formalism is so efficient for simplifying the equations describing the
spacetime, this is not fortuitous, it is because it relies on these classes of
principal null geodesics.

• Penrose suspected that the light rays (null geodesics) were playing an essential
role as they rule the causality. This was its main motivation in the NP
formalism, but there is more information in this formalism. It defined totally
the spacetime as the metric tensor can be written as the sum of the Minkowski
tensor (a fixed tensor) plus the tensorial product of principal null geodesics.

• This is the way followed by Kerr in his search of a solution, as related by B.
Carter in [11]:



Mathematics reveal the NP efficiency

• “ In all these spaces the Weyl tensor is of type D in the Petrov-Pirani
classification, the two double principal null vectors being given by
..(equations)…. By the kundt and Trumper generalization of the Goldberg-
Sachs theorem, these are integrable to give two shear-free null geodesics
congruences. The first of these is incoming the second outgoing…..

• It is by making use of these structural properties of the Weyl tensor and
specifically looking for non hypersurface-orthogonal solutions, that the empty
space metrics of the family were derived by Kerr. Subsequently these metrics
were derived by Kerr and Schild from a systematic study of empty solutions
whose metric tensor is ‘locally) the sum of a flat-space metric tensor and the
tensor product of a null vector with itself.”

B. Carter



Contribution of E. Cartan in 1922

• In a paper published at the « Académie des Sciences » [12] Elie
Cartan, as soon as in 1922, noticed the interest of what he called «the
optical universe » which belongs to a class of empty conformal
spacetimes in relativity.

• He noticed the existence of a class null geodesics, called principal null
geodesics, which play a structural rôle in the description of the
Schwarzchild spacetime (which is defined in vacuum).

• He identified that in the Schwarzschild spacetime these four principal
null geodesics are only two (each one is double).

• It is because this spacetime is of type D, but Cartan did not know that
as this will be established more than 30 years later by Petrov and
Pirani in their classification.

E.Cartan



This suggest a dual approach in Special relativity

• In Special relativity (SR), as all inertial (Galilean) frames are equivalent (no
preferred frame) usually, one is selected as the reference (that of the
observer) and for the others, their boost, their rotation are described from its
point of view.

• The velocity of light is an invariant (the same for all Galilean frames), but
the frequency of a light ray emitted on a frame is different in the others.

• As we know the structural role of light in relativity and as the velocity of
light is an invariant, this suggests to select a null geodesic as the reference.



This suggest a dual approach in Special relativity

• As ds² = 0, usually the four-momentum pµ is used as affine parameter on null
geodesics. It depends on the frequency of the photon whose energy is:

• E = hν

• Because:

• pµ = E/c = hν/c 

• In this case, if we calculate the Doppler shift f/f0 between two frames of relative
velocity v by using the relativistic Doppler equation with v/c = tanh(φ) i.e φ
=argtanh(v/c), see [8] for a demonstration, we will get :

•
𝑓

𝑓0
= eφ

• This result which gives the ratio of frequency will give the ratio of affine
parameter of two Galilean frames in the frequency representation.



Conclusion

• The Newman-Penrose formalism, in addition to simplify the equations
and to reveal hidden symmetries the spacetimes open the door to a
new conceptual approach relying on null basis geodesics and null
coordinates which is the dual of the usual analysis.

• A frequency-based analysis, is a kind of Fourier formalism where, as
many tools have been developed, this open a new field of
investigations.
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