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Painlevé's formalism eliminates Newtonian time
Summary

In 1921, in [6] Painlevé established a spatial, geometric and covariant formulation of Newtonian
gravitation. This complemented his development of Einstein’s general relativity (GR) to eliminate
the  singularity  of  the  Schwarzschild  solution  on  the  horizon  [5],[6]  and  permits  a  formal
comparison between Newtonian theory and GR [3],[4]. This type of relativistic formalism has been
long forgotten, and assumes that the Newtonian potential is a gauge applied to the Euclidean metric.
From this formulation ignoring Newtonian time, we obtain a physical dynamic parameter that is
dedicated to each observer in geodesic motion, and can be used, in place of Newtonian time, to fully
describe the system. We show that this formalism is physically compatible with the classical one
assuming certain relations between the dynamic parameters of the two formalisms1. This important
piece of work also removes the “a priori” concept of absolute Newtonian time. 

Introduction

Published in 1915 in Berlin during first World War, general relativity (GR) aroused little interest [2]
until 1921, when the Nobel Prize was awarded to Einstein. At the “Académie des sciences”, in
France,   Painlevé tried to improve the understanding of GR by comparing it  with the classical
mechanics in three articles [5], [6], [7]. 
The second article, compares the two theories, overcoming their differences due to the geometric
nature of GR gravitation, by developing a geometric interpretation of the Newtonian gravity2. 

The geometric form of Painlevé Newtonian mechanics

After  recalling  the  equation  of  classical  mechanics,  Painleve  provides  a  covariant  geometric
description of the exterior field of the one body spherical solution in classical mechanics by stating:
-----------------------------------------------------------------------------------------------------------------------
"As we can see, it follows that we can give to the theory of Newtonian gravitation the following 
formalism (according to the principle of least action): The trajectories of the point P are geodesics 
of the following ds²

ds² = (U + h) (dx ² + dy ² + dz ²),           (a)

where U is a function of x, y, z, which vanishes at infinity, whose ΔU is null outside of the sphere S 
and is equal to a negative constant inside S ", h is a constant and U = M/r. 3

------------------------------------------------------------------------------------------------------------------------
The Painlevé definition of a Euclidean conformal space

In contrast to the Newtonian's method where a mass produces a scalar potential in Euclidean space,
Painlevé presents a geometrical approach similar to relativity, in which a mass curves the space
geometry by multiplying it by a conformal factor. 
The geometry becomes Euclidean conformal, hence is no longer flat. The Weyl tensor remains null,
as both spaces have the same conformal (and causal) structure, but both the Ricci and Einstein
tensors which model the gravity are not null. In general relativity, it is the opposite: The Ricci and
Einstein tensors are null but not the Weyl tensor. This is commented in annex 2.

This illustrates that, even though both theories have similar geometric forms, they are different!
1In his last article [7], he will generalize this formalism to general relativity for the “Schwarzschild”solution. We will
show, in another article “Relativistic Schwarzschild's solution in Painlevé's spatial formalism”, that, subject to a small
modification of his article, this formalism allows to derive the solution.
2 This has some limitations, in particular the phenomenon must not depend on time. This was prefigured by P. Appell
[1], but for a different purpose (for a system in classical mechanics).
3  Today we would rather define U = -M/r. But for the demonstration we will use his definition.
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Equivalence of the geometric form of Painlevé with that of the Newtonian mechanics.

 In the annex, we demonstrate the equivalence between the Newtonian and geometric formalism of
classical  mechanics.  The  Newtonian  method  involves  two  constants  of  motion,  the  angular
momentum C and the total energy E such as:

  C=r2 d φ
d t

, (1)

d r2
+r 2d φ2

2d t 2 =
M
r

+E →d t 2
=

d r 2
+r 2 d φ2

2 (
M
r

+E )
. (2)

The  first  one  is  the  second Kepler  law,  the  second relation  is  the  Hamiltonian  of  the  system,
conserved, as in the single spherically symmetrical body problem, it does not depend on time.

In Painlevé's geometric formalism defined by equation (a), we also have two constants: L resulting
from the existence of an angular Killing vector L, as the metric does not depends on the coordinate
φ, and the “4-velocity invariant” (|UµUµ| = -1).  The constant h is related to the total energy of the
system. In such geometric formalism, s is the dynamic parameter.

As the spatial curves of the geodesics are plane (ellipses, parabolas, hyperbolas), we can set θ = π/2
in both formalisms. The coordinates r, θ, φ are the same in the two formalisms, but as the dynamic
parameters t  and  s  are  different,  nothing  implies  that  C  =  L and  E  =  h.  Let's  introduce  a
multiplicative constant k, in the Painlevé metric for getting C = L and  E = h, therefore:

d s2
=k (

M
r

+h )[ d r2
+r2 d φ2

] , (3)

       L=k (
M
r

+h)r 2 d φ
d s

. (4)

First step: Consistent spatial geodesic curves

Let's recall that in Newtonian formalism, these spatial geodesic curves are usually defined by4:

1
r
=

1+e. c o s ( f )

p
w i t h e=√1+

2 C2 E

M 2
, p=

C 2

M
, f =φ−ω . (5)

In the annex we demonstrate that, in Painlevé's formalism, the spatial geodesic curve equation is:

1
r
=

1+e. co s ( f )

p
w i t h e=√1+

4 L2 h

k M 2
, p=

2 L2

k M
, f =φ−ω , (6)

identical to the equation (5) of the Newtonian mechanics for k = 2, (C = L and E = h). Therefore:

d s2
=2(

M
r

+h )[ d r2
+r2 d φ2

] . (7)

 
From equations (2) and (7), we deduce: dt.ds = (dr² +r²dφ²) = dS². (8) 

This equation reveals a formal duality between the dynamic parameters t and s.
4 Where M is the Newtonian mass of the body generating the field, C is the angular momentum (constant) of its satellite
of mass m=1,  E is the total energy (constant) of the system in classical mechanics for this solution, e the “eccentricity”
of the curve, p the “focal parameter” and f the “true anomaly”.  For 0 ≤ e < 1 → -1 ≤  2C²E/M² < 0  → E < 0, we get an
ellipse, a circle for e = 0: the system is bound. For e = 1 → E = 0, we get a parabola: the system is critical. For e > 1 →
E > 0 we get a hyperbola: The system is unbound. First, we describe the case C ≠ 0. . We will consider C = 0, later.
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Second step: consistency of the dynamics, duality between time and  spacelike affine parameter

For specifying the geodesic, we need also to check that motion on this spatial curve is the same. 
The motion along different segments “X-Y”5  of equal length ∆S, evaluated in Euclidean metric, on
the spatial orbit (the ellipse),will require unequal intervals of time ∆t, ( Kepler, second law). 
The length ∆s of these “X-Y” segments, evaluated in Painlevé's metric, (geodesic, in a conformal
Euclidean space) are unequal. For representing it, in Euclidean space, we can set milestones P on
the orbit, marking the geodesic length  ∆s,  associated to X-Y.   This length  ∆s,  is these of  R(φ), a
curve, which is  Painlevé's isometric image of the orbit, solution of the differential equation (9-1)
and T(φ), the associated elapsed time is defined by (9-2), both curves for r, defined by equation (6)6.
 

Fig. 1.The red ellipse of coordinates  (r, φ) is an orbit (eccentricity = 0.5 in this example) in the
Euclidean space. The blue curve R(φ) is, roughly, its conformal image, The green curve represents
T(φ). Even though  NN1 (elapsed time, TT1) and  N'N1' (elapsed time, T'T'1) on the red curve are
highly unequal, on the blue curve, PP1 and P'P1', their images in Painlevé's formalism, to be used as
milestones for indicating their lengths in the conformal space, are equal. 

[dR(φ )]
2
+R(φ )

2
∗d φ 2

=(

4 (
M
r

+h)
2

L2 )r4
∗dφ2

(9−1) , [dT (φ )]
2
+T (φ )

2
∗d φ 2

=
r 4

L2 d φ 2
(9−2)

5 XY is a generic notation:P,P',P1,P1' for Painlevé's curve, N,N',N1,N1' for Newton's curve, T,T', T1, T1' for time's curve.
6 R(φ) is defined by the differential equation R' ²(φ)= f(R²(φ),  φ)→ R'(φ)=±√ f(R²(φ), φ) which define a family of
curves depending on initial conditions for φ = 0. An approximate curve, computed by using numerical  rk method, is
drawn for R(0) =2  →R'(0) =0. The blue curve is made of 4 parts , PA, AP',  P'B, BP where we use alternatively:
R'(φ)=+√ f(R²(φ),φ) and R'(φ)=-√ f(R²(φ), φ). The green curve defined for T(0) = 1/4.5 →T'(0) =0 is made of two parts
(TT' and T'T) corresponding to  T'(φ)=+√ f(T²(φ), φ) and T'(φ)=-√ f(T²(φ), φ). 

PNP',N'
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Some properties of T(φ) and R(φ) curves.

Even though the equation  R(φ) defines a family of an infinity of isometric curves, depending on
initial  value  R(0),  the  value  of  R(π) will  be  the  same in  all  of  these  curves.This  generates  an
application where a curve generates an infinity of other curves. We selected R(0) = 2, which implies
R'(0) = 0. From φ = 0 up to φ = 2π, we discover four extremum of R(φ), at φ = 0, φ =2π/3, φ = π,
φ =4π/3 implying  R'(φ)=+√ f(R²(φ),φ) to  change into R'(φ)=-√ f(R²(φ),φ) and,  conversely,  this
implies  that  the  curve  is  made  of  four  segments  joined  together.  Even  though  the  curve  is
continuous, the derivative may be not continuous, this depending on initial conditions.  Same kind
of remarks apply to T(φ), but with  only two extremum (φ = 0 and φ = π). We selected T(0) = 1/4.5
which implies T'(0) = 0. We see that  for φ = π, T'(π) ≠ 0, this may look quite odd, but we have to
keep in mind that the relation is defined between affine parameters of the curves.

What about the Painlevé original equation?
Equation (7) is more convenient for comparing the two formalisms. Does this mean that Painlevé
was wrong? The annex, eq. (1-2) shows that for k = 1, 2L² =C², that is consistent with eq. (6).  The
Painlevé equation describes the same phenomenology but under a different parameterization.

Unification of the formalism of Newtonian mechanics

This geometric formalism unifies the hybrid representation of classical mechanics (two equations)
in a single formalism, while promoting the spacelike affine parameter of the geodesic, as dynamic
parameter of the geodesic observer, in place of the absolute time of the classical mechanics. The
duality between s and t ensures the consistency and the equivalence of the two formalisms.

Painlevé uses the gauge freedom in his proposal

In classical mechanics, the length  s  of a plane curve defined by r = f(φ), in polar coordinates, is
implicitely computed in Euclidean metric. The equation of motion on this curve is given elsewhere.
We can also consider that the length s  is the affine parameter of this curve. Therefore, the curve is
defined by two functions: r(s) and φ(s). As s is not used in the equation r = f(φ), without altering the
relation r = f (φ), we have the freedom to apply a gauge transformation on this affine parameter, for
taking into  account  the  physical  effect  of  the  potential  of  Newtonian  gravity.  This  will  define
another curve, in another space, sharing the relation r = f(φ) , with the Euclidean curve.

Emergence of a physical spacelike dynamic parameter

As the Newtonian time  t, and the affine parameter  s of Painlevé's  formalism are both dynamic
physical parameter, notwithstanding with the difference in nature of space and time, this will make
ontologically  possible  their  equivalence7.  Unlike  to  Newtonian  formalism  where  the  time  is
universal here the dynamic parameter defined by Painlevé's formalism is, independently, dedicated
to each observer, in the same way that the proper time is dedicated to each observer in relativity.
The Painlevé formalism eliminates the metaphysical universal time from the classical mechanics.
Moreover, as the conformal factor curving this metric is fully determined by the gravitational field,
the latter transfers its physical attribute to the spacelike dynamic parameter of this phenomenology.

The special case of radial geodesic motion

In this case, the duality degenerates to the relation  t = i.s, the Newtonian time is the imaginary
counterpart of the affine spacelike parameter of the Painlevé formalism. See annex for more details.

7 The timelike dynamic parameter t,  measures the time  Δt for traveling over the segment XY of  the ellipse. The
spacelike dynamic parameter  s,  measures  the corresponding geodesic spatial  length Δs,  of the segment XY, in the
conformal space, curved by the gravity, which according Painlevé's proposal, would be the physical space.
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Annex 1: Detailed calculations

Spatial curve of the geodesic according Painlevé's formalism

The Painlevé metric is

 d s2
=k (

M
r

+h )( d r2
+r2 d φ2

) .           (A-0)

As the  metric  does  not  depend  on  φ,  a  Killing  vector  R associated  to  the  conserved  angular
momentum L exists. Its components are Rµ= {0, 1}. As Rµ = gμνRν , this yields

      L=Rµ
dφ
d s

=k (
M
r

+h )r 2 d φ
d s

→(
d φ
d s

)
2

=
L2

k 2
(

M
r

+h)
2

r 4
.              (A-1)

The relation between t and  s may be deducted from the Hamiltonian in classical mechanics, as
Painlevé recalled, in his article published at the “Académie des Sciences” on 05/01/1922.
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M
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=
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M
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=
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k (
M
r

+h )2(
M
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.

The relation between C and L will be given by

L2
=k 2

(
M
r

+h)
2

r4 d φ2

d t 2
[ k (

M
r

+h)2(
M
r

+h ) ]

=
k
2

r 4 d φ2

d t 2 =
k
2

C 2
.    8                (A-2)

.
Inserting L in the Painlevé metric divided by ds², yields

(
d s
d s

)
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M
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d s

)
2

+
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k 2
(

M
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M
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=
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M
r
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M
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2

r2

.                     (A-3)

Let's compute (dr/dφ)² =  (dr/ds )²(ds/dφ)² by using (A-2) et (A-3)

    
(

d r
d φ

)
2

=r 2
k (

M
r

+h )r2
−L2

L2

.                         (A-4)

One can write it : L2

r 2 (
d r
d φ

)
2

−[ k (
M
r

+h )r 2
−L2

]=0 .

8 We see that, according to its definition in (A-1), L = C for k =2. This was predictible as kinetic energy (of a unitary
mass) , in classical mechanics is defined by ½ v². 
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Rearranging and dividing by kr² will yield :

L2

k r4 [(
d r
d φ

)
2

+r 2
]−[(

M
r

+h ) ]=0 .                (A-5)

 
As this equation looks like the classical equation, we will use the same method for solving it but
setting

      u=
1
r
−

k M

2 L2
→

1
r
=u+

k M

2 L2
.                       (A-6)

By using (A-5), (A-4) becomes :
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k
(u+
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4

[ (
d r
d u
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2

(
d u
d φ
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2
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1
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d r
d u
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d u

)
2

=r 4
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k M
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−4
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by inserting and simplifying one get :

L2

k
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d u
d φ

)
2

+(u+
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2 L2 )

2

]−[ M (u+
k M
2 L2 )+h ]=0 .

By developing the square in the first bracket and simplifying (the « u.M » terms vanish) one get :
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d u
d φ

)
2
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k 2 M 2

4 L4
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√α2
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The equation is easy to integrate : The solution is:

a r c co s (
u
α

)=φ−ω →
u
α
=co s (φ−ω ) .

Coming back to coordinate r, will yield :

     

1
r
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√ k 2 M 2

4 L4 +
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1
r
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=
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+
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=
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k M

,    

which can be written :

 1
r
=

1+e c os ( f )

p
with e=√1+

4 L2 h
k M 2

, p=
2 L2

k M
, f =φ−ω .          (A-8)
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Relation between the spatial affine s parameter and the time t in this case.

From the relation:

d t 2
=

d s2

2(
M
r

+h )2(
M
r

+h)

→d t=
±d s

2(
M
r

+h)

→2 d t (
M
r

+h)=±d s

given in equation below equation (A-1) with k =2, by plugging the value of r and taking into 
account the definition of e and p given in equation (6), we get:

d s=±2(
M (1+e cos (φ))

p
+h)dt=±2(

M 2
(1+e cos(φ))

L2 +h)dt=±2 E (
2

e2
−1

(1+e cos(φ)+1))dt

In the last term of the equation we set h = E and used the definition of e:

e=√1+
2L2 E
M 2

→e2
−1=

2L2 E
M 2

→
M 2

L2
=

2 E
e2−1

For e = 0, i.e for a circular orbit we get :        d s=±2E.dt

We see that t and s are proportional in the case of a circular orbit, i.e are “equal”  with adapted units.

The radial geodesic equation

The radial geodesic equation derived in the classical geometrical formalism of Painlevé

As claimed by Painlevé in equation (A-9), the Newtonian gravity can be expressed by a geometric
formalism similar to that of general relativity, so we will apply the method used in general relativity
to derive the geodesic of:
   ds² = (U+h) [dr²+r²(dθ² + sin²θdφ²)].          (A-9)

In this context, the geometric Lagrangian L(xµ, dxµ/dλ) associated with the metric can be written

L( xµ ,
d x µ

d λ
)=

1
2

gµ ν ( x , y , z )[
d x µ

d λ
d xν

d λ
]=

1
2

d s2 ,         (A-10)

where λ is the spatial affine parameter of the geodesic curve which measures the length of the curve.
With the conventions of Painlevé, for the radial geodesic, the Euclidean spatial metric is:

grr(r)= U(r) +h.

This yields

L( r ,
d r
d λ

)=
1
2
[ U (r )+h ] (

d r
d λ

)
2

,         (A-11)

with the Lagrangian defined by (A-11), by using the Euler-Lagrange equation , we get the equation

      [U (r )+h ]
d ² r
d λ2 +

1
2
(

d r
d λ

)
2

∂r U (r )=0 ,

either:
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d²r
d λ2 +

1
2
(

d r
d λ

)
2 ∂r U (r )

[U (r )+h ]
=0 .        (A-12)

This is the geodesic motion equation derived from the spatial metric (A-9) of Painlevé.

The radial geodesic equation derived in conventional Newtonian mechanics

In classical mechanics, the equations of motion involve derivatives with respect to time. In the
definition of the Painlevé’s proposal,  time is  absent,  then how is  it  related to  the equations of
classical mechanics where the Euler-Lagrange equation can be written

(
d
d t

)(
∂ L

∂(
d xµ

d t
)

)=
∂ L

∂ x µ ,         (A-13)

where the classical Lagrangian is equal to the kinetic energy less the potential energy, i.e here:

 L( r ,
d r
d t

)=
1
2
(

d r
d t

)
2

−[U (r )+h ] .         (A-14)

This shows that h is related to the total energy of the system. Applying the Lagrange equations in 
classical mechanics, will yield:

d 2 r
d t2 +∂r U (r )=0 .         (A-15)

Conditions to be satisfied for getting identical geodesic equations

Let’s compare (A-12) and (A-15). The form of these equations is equivalent if:

1
2

(
d r
d λ

)
2

U (r )+h
=1

.

This can be written:

     1
2
(

d r
d λ

)
2

−U (r )=h .         (A-16)

Is there a relationship between the affine parameter λ,  and the parameter  t such as  t  = aλ + b,
showing that the Painlevé's proposal allows to consider t as an affine parameter?

Some relativistic attributes appear in Painlevé's geometrical formalism

Let's set t = i.λ.

Plugging in equation (A-16) yields : 1
2
(

d r
d t

)
2

+U (r )=−h .

This is the expression of the Hamiltonian in classical mechanics giving the total energy of the test
particle (of unit mass). We know that, when the potential describing the gravitational field does not
depend on time, the energy is conserved on a geodesic. We have shown that whether we set t = iλ,
the proposal of Painlevé is relevant. The Newtonian time t is  an affine parameter of spatial curve.
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Annex 2: Curvature of the conformal Euclidean space.

The space defined by Painlevè is  :     d s2
=2 (

M
r

+h )[ d r2
+r 2 d φ2

]

In this equation we set, as usual because the geodesic is included in a plane, θ = π/2. As stated 
before,  the Weyl tensor vanishes because it is null in Euclidean space and, as it is a  conformal 
invariant tensor, this does not change its value.

The six non vanishing Christoffel symbols values are:9

The Riemann tensor has six different non vanishing values, 

9 All these values was computed by using mathematica. Let us note that with θ = π/2, some of them may be simplified.
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The Ricci tensor Rij and the Einstein tensor Gij  non vanishing different values are:

The Ricci scalar  is:

 

Comments on these results.

In general relativity the Ricci tensor and therefore the Ricci scalar and  the Einstein tensor vanish in
vacuum. 

The curvature in vacuum is related by the Weyl tensor and therefore in the Riemann tensor as the
Weyl tensor is a part of it..

 In the solution proposed by Painlevé it is the opposite. 

This shows that, obviously, this solution, whose formalism is similar to that of general relativity, is
not a solution of the general relativity. Even though they use the same geometric formalism,the two
theories are different.
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Conclusion

This marginal contribution of Painlevé, almost unknown, included in his masterful work on general
relativity, if it shows an original inspiration was treated superficially by the author.
Even though his proposal involves highly innovative ontological elements, such as the emergence
of  a  physical  dynamic  parameter  of  geodesics,  which  would  render  obsolete  the  Newtonian
metaphysical  time  and unification  of  the  formalism for  the  geodesic  motion,  Painlevé  and his
contemporaries failed to explore all  of the profound epistemological implications raised by this
proposal.  But  one  should  not  be  too  harsh  about  that,  as  even  today,  this  remains  widely
misunderstood, being too far from our common schemes of thinking.
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